Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
J Hazard Mater ; 469: 133962, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452679

RESUMO

Tert-butyl hydroquinone (TBHQ) stand as one of the most widely used antioxidants in food and daily chemical products. Rapid and sensitive monitoring of TBHQ holds considerable importance in safeguarding human health due to its potential risks. In this study, we devised an alcogel-based colorimetric sensor enabling the portable and visual detection of TBHQ. The Ce-UiO-66 nanozyme exhibiting remarkable oxidase-like activity, was synthesized and characterized, facilitating the catalysis of TBHQ oxidation to 2-tert-butyl-1,4-benzoquinone (TBBQ). The ensuing chromogenic reaction between TBBQ and ethylenediamine produced a stable and colored product, serving as a reliable indicator for the rapid and specific detection of TBHQ. Building upon this discovery, a portable and low-cost colorimetric sensor was fashioned by integrating the nanozyme into κ-carrageenan alcogel, thereby enabling on-site TBHQ detection via a smartphone-based sensing platform. The colorimetric sensor exhibited a detection limit of 0.8 µg mL-1, demonstrating robust performance across various matrices such as edible oils, cosmetics, and surface water. Recoveries ranged from 84.9 to 95.5%, with the sensor's accuracy further validated through gas chromatography-mass spectrometry. Our study presents an effective approach to rapid and convenient monitoring of TBHQ, exhibiting good extensibility and practicability.


Assuntos
Colorimetria , Hidroquinonas , Humanos , Hidroquinonas/análise , Antioxidantes
2.
J Pharm Biomed Anal ; 242: 116021, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354540

RESUMO

Multicomponent drugs are medications that combine two or more active pharmaceutical ingredients in a single dosage form. These dosage forms improve the patient compliance, reduce the risk of drug interactions, and simplify dosing regimens. However, quality control of these multicomponent dosage forms can be challenging, especially if the final product contains four or more ingredients that are active (comprise stabilizers, preservatives, excipients, and other components). This problem can be more pronounced if the excipients can interfere with the analysis. In this work, a stability indicating assay method was developed and validated (according to the ICH International Guidelines) for the simultaneous determination of hydroquinone (HQ), tretinoin (TRT), hydrocortisone (HCA), butylated hydroxytoluene (BHT), methyl paraben (MP) and propyl paraben (PP) in commercially available pharmaceutical creams. The proposed method is based on gradient elution using X-Bridge C18 (150 × 4.6 mm, 5 µm) column with a flow rate of 1 mL/min. The linear ranges (µg/mL) were 240-560 for HQ, 24-56 for MP, 132-308 for HCA, 6-14 for PP, 12-28 for BHT, 6.6-15 for TRT. During the validation process, the intra- and interday precision and trueness (evaluated as recovery) were found to be below 2.0% and between 100-102%, respectively. System suitability tests (SST) allow validating the herein proposed procedure specifically for pharmaceutical and industrial applications. SST test shows that the reported procedure fulfill with the Guidelines, allowing excellent separation of the analytes with very sensitive, accurate (precise and true) and reproducible quantitation of each analytes. The method was successfully applied in forced degradation studies of the six analytes. Specifically, acid degradation slightly affected HCA and BHT (91% recovery), while alkaline degradation drastically reduced HCA recovery (5.5%) and moderately affected BHT (85%). Photodegradation primarily influenced TRT quantity, and oxidative degradation intensified the BHT peak (130%).


Assuntos
Parabenos , Tretinoína , Humanos , Parabenos/análise , Tretinoína/análise , Hidrocortisona/análise , Hidroxitolueno Butilado , Excipientes , Cromatografia Líquida de Alta Pressão/métodos , Hidroquinonas/análise
3.
Arch Dermatol Res ; 315(10): 2805-2812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37568064

RESUMO

Melasma is an acquired chronic condition characterized by hyperchromic patches in photo-exposed areas. The search for new compounds for the treatment of melasma without side effects is constant. In this context, the aim of this study was to investigate the in vitro cytotoxic and antimelanogenic effects of the trace elements Zinc (Zn) and Selenium (Se). In this study, we evaluated the effects of 30 µM hydroquinone, this concentration did not alter mitochondrial function (MTT assay), but increased the percentage of necrotic cells and levels of reactive species. Furthermore, it showed no influence on tyrosinase activity and melanin content. Unlike hydroquinone, exposure for 48 h to 100 µM Zn and 1 and 5 µM Se had no significant influence on the analysis of reactive species, as well as on the percentage of necrotic cells. Still, specifically in relation to 100 µM Zn, it decreased the melanin content. Given the above, the trace elements Zn and Se did not show toxicity at the concentrations tested and Zn showed a promising effect, however, the mechanism needs to be better explored in order to contribute to new and updated research in the fight against melasma with a perspective of therapeutic use.


Assuntos
Melanose , Selênio , Oligoelementos , Humanos , Selênio/farmacologia , Selênio/análise , Zinco/análise , Zinco/farmacologia , Oligoelementos/análise , Hidroquinonas/análise , Melaninas , Melanose/tratamento farmacológico
4.
Environ Sci Technol ; 57(32): 11967-11976, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478127

RESUMO

Little information is available on the roles of natural phenolic compounds in polycyclic aromatic hydrocarbons (PAHs) attenuation at dry soil-air interfaces. The purpose of this study was to determine the roles of model phenolic constituents of soil organic matter (SOM) on the abiotic attenuation of PAHs. The phenolic compounds can significantly change the attenuation rates of PAHs, among which hydroquinone was the most effective in promoting anthracene and benzo[a]anthracene attenuation. Product identification and sequential extraction experiments revealed hydroquinone enhanced the formation of oxidative coupling products and promoted the incorporation of PAHs into humic analogues, thereby reducing potential risks to humans and ecosystems. Electron paramagnetic resonance spectroscopy analyses showed both PAHs and phenolic compounds could donate electrons to Lewis acid sites of soil minerals, resulting in the generation of persistent free radicals (PFRs). PFRs could promote the generation of ·OH to enhance PAH oxidation and could cross-couple with PAHs, resulting in high-molecular-weight oxidative coupling products. This study revealed for the first time the reaction mechanism between PAHs and phenolic components of SOM under relatively dry conditions and provided new insights into promoting PAHs detoxification in soils but also a potential strategy to increase the organic carbon sequestration.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Solo/química , Hidroquinonas/análise , Acoplamento Oxidativo , Ecossistema , Antracenos/análise , Fenóis , Radicais Livres
5.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36831944

RESUMO

Exposure to hydroquinone (HQ) can cause various health hazards and negative impacts on the environment. Therefore, we developed an efficient electrochemical sensor to detect and quantify HQ based on palladium nanoparticles deposited in a porous silicon-polypyrrole-carbon black nanocomposite (Pd@PSi-PPy-C)-fabricated glassy carbon electrode. The structural and morphological characteristics of the newly fabricated Pd@PSi-PPy-C nanocomposite were investigated utilizing FESEM, TEM, EDS, XPS, XRD, and FTIR spectroscopy. The exceptionally higher sensitivity of 3.0156 µAµM-1 cm-2 and a low limit of detection (LOD) of 0.074 µM were achieved for this innovative electrochemical HQ sensor. Applying this novel modified electrode, we could detect wide-ranging HQ (1-450 µM) in neutral pH media. This newly fabricated HQ sensor showed satisfactory outcomes during the real sample investigations. During the analytical investigation, the Pd@PSi-PPy-C/GCE sensor demonstrated excellent reproducibility, repeatability, and stability. Hence, this work can be an effective method in developing a sensitive electrochemical sensor to detect harmful phenol derivatives for the green environment.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Hidroquinonas/análise , Hidroquinonas/química , Polímeros/química , Nanopartículas Metálicas/química , Silício , Paládio/química , Pirróis/química , Fuligem , Porosidade , Reprodutibilidade dos Testes , Carbono/química , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos
6.
Mikrochim Acta ; 189(11): 414, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217039

RESUMO

The development of a homemade carbon black composite filament with polylactic acid (CB-PLA) is reported. Optimized filaments containing 28.5% wt. of carbon black were obtained and employed in the 3D printing of improved electrochemical sensors by fused deposition modeling (FDM) technique. The fabricated filaments were used to construct a simple electrochemical system, which was explored for detecting catechol and hydroquinone in water samples and detecting hydrogen peroxide in milk. The determination of catechol and hydroquinone was successfully performed by differential pulse voltammetry, presenting LOD values of 0.02 and 0.22 µmol L-1, respectively, and recovery values ranging from 91.1 to 112% in tap water. Furthermore, the modification of CB-PLA electrodes with Prussian blue allowed the non-enzymatic amperometric detection of hydrogen peroxide at 0.0 V (vs. carbon black reference electrode) in milk samples, with a linear range between 5.0 and 350.0 mol L-1 and low limit of detection (1.03 µmol L-1). Thus, CB-PLA can be successfully applied as additively manufactured electrochemical sensors, and the easy filament manufacturing process allows for its exploration in a diversity of applications.


Assuntos
Hidroquinonas , Fuligem , Catecóis/análise , Peróxido de Hidrogênio , Hidroquinonas/análise , Poliésteres , Água
7.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298383

RESUMO

This paper proposes a deep leaning technique for accurate detection and reliable classification of organic pollutants in water. The pollutants are detected by means of cyclic voltammetry characterizations made by using low-cost disposable screen-printed electrodes. The paper demonstrates the possibility of strongly improving the detection of such platforms by modifying them with nanomaterials. The classification is addressed by using a deep learning approach with convolutional neural networks. To this end, the results of the voltammetry analysis are transformed into equivalent RGB images by means of Gramian angular field transformations. The proposed technique is applied to the detection and classification of hydroquinone and benzoquinone, which are particularly challenging since these two pollutants have a similar electroactivity and thus the voltammetry curves exhibit overlapping peaks. The modification of electrodes by carbon nanotubes improves the sensitivity of a factor of about ×25, whereas the convolution neural network after Gramian transformation correctly classifies 100% of the experiments.


Assuntos
Aprendizado Profundo , Poluentes Ambientais , Nanotubos de Carbono , Hidroquinonas/análise , Poluentes Ambientais/análise , Água , Benzoquinonas
8.
Se Pu ; 40(9): 797-809, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36156626

RESUMO

Various types of oxidative dyes used in hair dye products possess poor stability and have varying frequency of use. Interference problems also frequently arise in actual sample measurements. Therefore, it is necessary to establish a simple, rapid, accurate, and specific method for the determination of common dyes in hair dye products for their effective regulation. In this study, dyes were grouped according to their frequency of use. Using a C18 column that minimizes the silanol effect and influence of metals, the quantitative high performance liquid chromatography (HPLC) method for 32 dyes listed in Safety and Technical Standards for Cosmetics (2015 edition) was optimized, and a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) confirmatory method for the dyes was established. The samples were extracted using a mixed solution of ethanol-water (1∶1, v/v) with 10 g/L sodium bisulfite solution as an antioxidant, vortexed and mixed, and then extracted by ultrasonication in an ice bath for 10 min. Methanol, acetonitrile, and phosphate buffer were used as the mobile phases in the HPLC analysis. Additionally, two different elution conditions (chromatographic gradient) were used for the separation of 32 oxidative dyes, which were detected at a wavelength of 280 nm. The HPLC separations were compared using columns of particle sizes 5 µm and 2.7 µm; 5 µm C18 columns with better anti-interference and antiblocking ability were selected. Satisfactory separation was achieved for all three commercial C18 columns with a particle size of 5 µm, and the method had good general usability. In condition 1, 17 commonly used dyes and three less commonly used dyes were assigned to group Ⅰ and separated by HPLC; in condition 2, eight banned dyes and four other less commonly used dyes were assigned to group Ⅱ and separated by HPLC. The HPLC-MS/MS method used 5 mmol/L ammonium acetate aqueous solution-acetonitrile and 5 mmol/L acetic acid aqueous solution-acetonitrile as mobile phases in the positive and negative ion modes, respectively. Multiple reaction monitoring (MRM) was performed for qualitative and quantitative analyses in the electrospray ionization mode. Under the examined conditions, six pairs of isomers were well resolved. For the HPLC and HPLC-MS/MS methods, the relative standard deviations (RSDs) of the intra-day precision and 48 h stability tests were less than 10%. The recoveries were between 82.6% and 114.9% (RSD<10%). In the HPLC method, 32 dyes showed good linearity in an approximate range of 10-500 mg/L (r2>0.99), and the limits of detection (LODs) were 9.7-40.1 µg/g. The linear range of hydroquinone in the HPLC-MS/MS method was 2.0-79.7 mg/L, and the LOD was 8.0 µg/g; the linear ranges of the other components were approximately 0.1-4 mg/L, and the LODs were 0.01-0.4 µg/g. The actual samples were simultaneously measured by HPLC, HPLC-MS/MS, and the standard method. Finally, 16 of the 32 dyes were detected, and the detected contents ranged from 58 to 25160 µg/g. The RSDs of the results obtained from the three detection methods were between 1.9% and 10.1%. All detected components were within the limits of group Ⅰ of this method. In comparison with methods reported in the literature and the standard method, this method covers all components for the routine regulatory inspection of oxidative dyes in cosmetics. The method can separate the commonly used dyes under the same HPLC conditions and avoid interference from 15 other commonly used dyes during the analysis of actual samples. A suitable HPLC-MS/MS confirmatory method was also established for the identification of currently unknown substances in the statutory inspection of cosmetics. The method is simple, rapid, accurate, and specific with general usability and good operability.


Assuntos
Cosméticos , Tinturas para Cabelo , Acetatos , Acetonitrilas , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Cosméticos/análise , Etanol , Tinturas para Cabelo/análise , Hidroquinonas/análise , Gelo/análise , Metanol , Estresse Oxidativo , Fosfatos , Espectrometria de Massas em Tandem
9.
Pestic Biochem Physiol ; 187: 105197, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127069

RESUMO

Methyl parathion is an organophosphorus pesticide widely employed worldwide to control pests in agricultural and domestic environments. However, due to its intensive use, high toxicity, and environmental persistence, methyl parathion is recognized as an important ecosystem and human health threat, causing severe environmental pollution events and numerous human poisoning and deaths each year. Therefore, identifying and characterizing microorganisms capable of fully degrading methyl parathion and its degradation metabolites is a crucial environmental task for the bioremediation of pesticide-polluted sites. Burkholderia zhejiangensis CEIB S4-3 is a bacterial strain isolated from agricultural soils capable of immediately hydrolyzing methyl parathion at a concentration of 50 mg/L and degrading the 100% of the released p-nitrophenol in a 12-hour lapse when cultured in minimal salt medium. In this study, a comparative proteomic analysis was conducted in the presence and absence of methyl parathion to evaluate the biological mechanisms implicated in the methyl parathion biodegradation and resistance by the strain B. zhejiangensis CEIB S4-3. In each treatment, the changes in the protein expression patterns were evaluated at three sampling times, zero, three, and nine hours through the use of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and the differentially expressed proteins were identified by mass spectrometry (MALDI-TOF). The proteomic analysis allowed the identification of 72 proteins with differential expression, 35 proteins in the absence of the pesticide, and 37 proteins in the experimental condition in the presence of methyl parathion. The identified proteins are involved in different metabolic processes such as the carbohydrate and amino acids metabolism, carbon metabolism and energy production, fatty acids ß-oxidation, and the aromatic compounds catabolism, including enzymes of the both p-nitrophenol degradation pathways (Hydroquinone dioxygenase and Hydroxyquinol 1,2 dioxygenase), as well as the overexpression of proteins implicated in cellular damage defense mechanisms such as the response and protection of the oxidative stress, reactive oxygen species defense, detoxification of xenobiotics, and DNA repair processes. According to these data, B. zhejiangensis CEIB S4-3 overexpress different proteins related to aromatic compounds catabolism and with the p-nitrophenol  degradation pathways, the higher expression levels observed in the two subunits of the enzyme Hydroquinone dioxygenase, suggest a preferential use of the Hydroquinone metabolic pathway in the p-nitrophenol degradation process. Moreover the overexpression of several proteins implicated in the oxidative stress response, xenobiotics detoxification, and DNA damage repair reveals the mechanisms employed by B. zhejiangensis CEIB S4-3 to counteract the adverse effects caused by the methyl parathion and p-nitrophenol exposure.


Assuntos
Dioxigenases , Metil Paration , Praguicidas , Aminoácidos , Burkholderiaceae , Carboidratos , Carbono , Ecossistema , Ácidos Graxos , Hidroquinonas/análise , Metil Paration/análise , Metil Paration/química , Metil Paration/toxicidade , Nitrofenóis , Compostos Organofosforados , Proteômica , Espécies Reativas de Oxigênio , Solo
10.
Anal Methods ; 14(40): 3961-3969, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36173377

RESUMO

Designing MOF-based materials with desired electrochemical activity and high electron conductivity may yield a novel electrochemical sensor that effectively detects various organic pollutants and conducts health monitoring. This study developed a facile and versatile electrochemical sensor for simultaneously monitoring the environmental pollutants hydroquinone (HQ) and catechol (CT). The electrodes are fabricated by modifying a GCE with a Cu-functionalized MOF (UiO-bpydc-Cu) and multi-walled carbon nanotubes (MWCNTs). The Cu-functionalized MOF effectively improved the electronic conductivity by metalating the 2,2'-bipyridyl-derived UiO-bpydc with Cu2+ ions. Moreover, due to the synergic effect, the composite electrode exhibits a significant voltammetric response to HQ's and CT's electro-redox. A rapid and sensitive method of synchronously detecting HQ and CT has been established by differential pulse voltammetry (DPV). The experiments reveal that the linear response ranges were 0.5-565 µM and 1-1350 µM for HQ and CT, respectively, with low detection limits of 0.361 µM and 0.245 µM. The proposed UiO-bpydc-Cu/MWCNTs/GCE electrochemical sensor shows high sensitivity, good anti-interference, reproducibility, and stability. It can also be applied for detecting HQ and CT in actual samples.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Hidroquinonas/análise , Reprodutibilidade dos Testes , 2,2'-Dipiridil , Eletrodos , Catecóis/análise
11.
Environ Res ; 213: 113601, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660564

RESUMO

In this study, lignite activated coke (LAC) was used as the carrier for the first time, Fe3O4-CuO composite metal oxide was used as the main active material, and the nano-scale magnetic supported composite metal oxide Fe3O4-CuO@LAC catalyst was synthesized for the first time, which can effectively activate the active oxygen in peroxodisulfate (PS). XRD, FTIR, BET, SEM, XPS and other analysis results showed that there was particulate matter with spherical structure on the surface of the active coke, and its diffraction peaks matched well with the characteristic peaks of Fe3O4 and CuO, and it was a mesoporous structure with a specific surface area of 619.090 m2 g-1. By optimizing the experimental conditions, the results showed that more than 92% of hydroquinone can be removed under the conditions of hydroquinone concentration of 50 mg/L, pH = 5, adding 0.1 g/L catalyst and 3 mmol/L PS. EPR and quenching experiments proved that there were four reactive oxygen species in the reaction system ·OH, SO4-·, O2-· and 1O2. According to the degradation products of hydroquinone detected by LC-MS, the possible degradation path was deduced which laid a foundation for solving the problem of difficult treatment of phenol-containing wastewater in coal chemical industry.


Assuntos
Coque , Poluentes Químicos da Água , Indústria Química , Carvão Mineral/análise , Coque/análise , Cobre , Hidroquinonas/análise , Óxidos/análise , Fenóis/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise
12.
Anal Methods ; 14(20): 2003-2013, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35543344

RESUMO

The present study reports the synthesis and characterization of hydrophobic deep eutectic solvents (HDES) based on fatty acids and tetrabutylammonium bromide (TBAB) or 1-octanol using Fourier transform infrared spectroscopy, and the analysis of the physicochemical properties (viscosity, density, electrical conductivity, and water content) of these solvents. A carbon paste electrode modified with 6.0% (m/m) decanoic acid and TBAB-based HDES was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The oxidation peak currents of the proposed electrode were enhanced by its high electrochemical activity, fast electron transfer rate, and high surface area, while a remarkable decrease was observed in the peak potential separation. The electrochemical determination of hydroquinone (H2Q) was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV). The electrode response was found to be linear in the H2Q concentration range of 2.5 × 10-6-3.0 × 10-3 mol L-1, with the limit of detection (LOD) of 7.7 × 10-7 mol L-1. The method was successfully applied for H2Q determination in dermatological creams.


Assuntos
Carbono , Hidroquinonas , Carbono/química , Solventes Eutéticos Profundos , Técnicas Eletroquímicas/métodos , Eletrodos , Hidroquinonas/análise , Solventes
13.
Anal Chim Acta ; 1210: 339871, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35595358

RESUMO

Hydroquinone (HQ) and catechol (CC) are important chemical raw materials in the modern industry, unfortunately, which are also high toxic phenolic pollutants. So how to achieve highly sensitive and selective determination HQ and CC is the challenge we face. In the present work, we report a facile strategy to obtain nitrogen and phosphorous co-doped glucose-derived carbon coated CoP nanowires (G-CoP/N,P-C NWs), in which nitrilotriacetic acid (NTA) was as the chelating reagent, glucose was as carbon source, and the precursors were subsequently experienced carbonization and phosphorization process. G-CoP/N,P-C NWs can shorten the distance of the electron transport and expand the reaction area, showing the intriguing electronic conductivity and electrocatalytic abilities. An electrochemical phenolic sensor based on G-CoP/N,P-C NWs is fabricated. The as-prepared sensor showcases the good sensing performance for HQ and CC with comparative linearity ranges of 0.8-900 µM (HQ) and 0.6-800 µM (CC), low limits of detections (LODs) of 0.18 µM (S/N = 3) and 0.12 µM (S/N = 3) for HQ and CC, respectively. Notably, it also displays excellent practical application for the recognition of HQ and CC in the rain water, the tap water, the domestic wastewater and the lake water, which may be a promising candidate in environmental water monitoring and drinking water safety.


Assuntos
Hidroquinonas , Nanofios , Carbono , Catecóis/análise , Eletrodos , Glucose , Hidroquinonas/análise , Fenóis , Águas Residuárias , Água
14.
ACS Appl Mater Interfaces ; 14(5): 6484-6498, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099171

RESUMO

A novel multifunctional Janus magnetic micromotor was designed and constructed by using MIL-100(Fe)@TiO2@Fe3O4 multicore-shells modified with horseradish peroxidase (HRP) as a smart active platform to realize detection and degradation of hydroquinone (HQ). The obtained micromotor showed a unique three-dimensional (3D) hierarchical architecture with highly exposed active sites and could autonomously move at a speed of 140 ± 7.0 µm·s-1 by O2 bubbles generated from the catalytic decomposition of H2O2 fuel. Benefiting from the combination of active self-propulsive motion, high peroxidase-like activity, tuned heterojunctions with matching band structures, and a 3D hierarchical structure, an effective platform involving dynamically sensitive detection and quick removal of HQ from water was established by using the multifunctional HRP-integrated MIL-100(Fe)@TiO2@Fe3O4 Janus micromotor. The proposed multifunctional Janus magnetic micromotor had advantages of simple and feasible fabrication, sensitive detection and effective photo-Fenton degradation of HQ in a wide pH range of 4-7, and magnetic recycling, revealing potential for environmental remediation applications.


Assuntos
Colorimetria/métodos , Óxido Ferroso-Férrico/química , Peroxidase do Rábano Silvestre/química , Hidroquinonas/análise , Magnetismo , Estruturas Metalorgânicas/química , Titânio/química , Catálise , Peroxidase do Rábano Silvestre/metabolismo , Concentração de Íons de Hidrogênio , Hidroquinonas/química , Hidroquinonas/metabolismo , Luz , Limite de Detecção , Reciclagem
15.
Anal Bioanal Chem ; 414(2): 1039-1048, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34676433

RESUMO

The rapid development of nanozymes for ultrasensitive detection of contaminate has resulted in considerable attention. Herein, a carboxyl- and aminopropyl-functionalized copper organophyllosilicate (Cu-CAP) was synthesized by a facile, one-pot sol-gel method. The bifunctional groups endow it with superior catalytic activity than that of natural enzyme. Besides, it possesses outstanding catalytic stability under harsh conditions such as high temperature, extremely high or low pH, and high salinity. Apart from laccase-mimetic activity, Cu-CAP also shows oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) to the blue-colored TMBox in the presence of H2O2, which is similar to natural horseradish peroxidase (HRP). Interestingly, this colorimetric system was suppressed by hydroquinone (HQ) specifically. Inspired by this, Cu-CAP was used to develop a highly sensitive and selective colorimetric method for the determination of HQ. This assay displayed an extremely low detection limit of 23 nM and was applied for the detection of HQ in environmental water with high accuracy. This approach offers a new route for the rational design of high performance nanozymes for environmental and biosensing applications.


Assuntos
Cobre/química , Hidroquinonas/análise , Nanoestruturas/química , Silicatos/química , Colorimetria/métodos , Cinética , Limite de Detecção , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Mikrochim Acta ; 189(1): 29, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910256

RESUMO

An Au-based nanozyme composite (AuNPs/Cu,I) was constructed by using Cu,I-doped carbon dots (Cu,I-CDs) as the reducing agent as well as the nanozyme. Notably, AuNPs/Cu,I nanozyme not only possessed the intrinsic activity of mimicking enzymes of superoxide dismutase, peroxidase, and catalase at different conditions but was also employed as surface-enhanced Raman spectroscopy (SERS) enhancer. The combination of Cu,I-CDs and AuNPs promoted the electron transferability, leading to increased peroxidase-like activity and superoxide-like activity. Compared to the individual Cu,I-CDs and AuNPs nanozyme, the AuNPs/Cu,I composite demonstrated promising peroxidase-like activity by transferring electrons instead of generating OH. Interestingly, the multienzyme-like activity of AuNPs/Cu,I nanozyme could be finely tuned by changing the composition of Cu0/Cu+ and Au. The tert-butyl hydroquinone (TBHQ) as the substrate could be catalyzed with AuNPs/Cu,I nanozyme to produce red substances, resulting in a significant Raman enhancement effect at the same time, showing good linear range from 0.11 to 10 mg L-1. Overall, the current investigation provides a flexible and controllable way to design multifunctional nanozymes along with the Raman enhancement strategy based on the catalysis of nanozyme.


Assuntos
Hidroquinonas/análise , Nanopartículas Metálicas/química , Nanocompostos/química , Pontos Quânticos/química , Catálise , Cobre/química , Ouro/química , Hidroquinonas/química , Iodo/química , Limite de Detecção , Oxirredução , Análise Espectral Raman/métodos
17.
Shokuhin Eiseigaku Zasshi ; 62(4): 125-128, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34470941

RESUMO

A rapid, easy and versatile analytical method based on three-layer extraction was developed for the determination of tert-butylhydroquinone (TBHQ) in foods. In this method, degreasing with n-hexane, partitioning into acetonitrile, and purification by the salting-out were simultaneously performed after extraction with acetone. It allowed to prepare a test solution without concentrating, transferring, and purification using solid phase extraction column. As a result, TBHQ for a wide variety of 11 foods met the management criteria of the guideline for validity assessment (Ministry of Health, Labour and Welfare of Japan). Thus, the present method could be useful for a rapid determination of TBHQ in foods.


Assuntos
Hidroquinonas , Extração em Fase Sólida , Antioxidantes , Hidroquinonas/análise , Japão
18.
Food Chem ; 361: 130039, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022482

RESUMO

This study aimed to obtain a reliable evaluation about addition of tert-butylhydroquinone (TBHQ), and distribution of TBHQ and 2-tert-butyl-1,4-benzoquinone (TBBQ) contents in typical edible oils and oleaginous foods marketed in Hangzhou City. Briefly, the probability of labeled with addition of TBHQ in foods decreased from 36.45 ± 2.6% to 28.78 ± 3.7% in the period from 2018 to 2020. In the 135 analyzed samples, TBHQ contents were far less than the maximum legal additive amount, and TBBQ contents ranged from below its limit of quantification (LOQ) to 13.54 ± 1.15 mg/kg. The conversion rate from TBHQ to TBBQ in edible oils was 2.94 ± 1.17%, much lower than that in other food categories. Further research determined that the process method and food composition were the main factors for different conversion rates from TBHQ to TBBQ in various food categories. In addition, oil consumption was found to be the primary source of dietary intake of TBHQ and TBBQ.


Assuntos
Benzoquinonas/análise , Hidroquinonas/análise , Óleos de Plantas/análise , China , Análise de Alimentos , Inocuidade dos Alimentos
19.
Environ Sci Pollut Res Int ; 28(36): 50255-50265, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33954923

RESUMO

Oxidative stability of prototypical groundnut oil (GO) and mustard oil (MO) blended with a significant characteristic addition of antioxidants, α-tocopherol (α-T) and TBHQ (tert-butyl hydroquinone), at different concentrations was analysed. α-T (natural) and TBHQ (synthetic) antioxidants at a different concentrations from 0 to 20 mg/L were blended with GO and MO to prepare 18 samples. Compositional analysis of groundnut oil and mustard oil was carried out using gas chromatography and mass spectra (GCMS). Electrical properties like dielectric constant, tanδ, specific resistance etc. were investigated at frequencies from 1 Hz to 10 MHz for the modified samples. Thermal properties like breakdown voltage, flash and fire points and viscosity of all samples were also premeditated. It was observed that dielectric constant (ε') of GO reduces from 3.58 to 2.82 with the addition of α-T but increases to 3.29 with the addition of TBHQ, whereas in MO, dielectric constant increases from 2.93 to 3.38 with the addition of α-T and rises to 3.27 with the addition of TBHQ at 15 mg/L. The synergistic effect of antioxidants in regulating the insulation nature of the oil is found to be more effective with α-tocopherol compared to TBHQ in GO. Higher breakdown voltage and more stability were observed in oil with the addition of antioxidant (TBHQ) in low concentration. The study would be useful in the selection of eco-friendly coolants in engineering and industry.


Assuntos
Antioxidantes , Óleos de Plantas , Antioxidantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidroquinonas/análise , Oxirredução , alfa-Tocoferol
20.
Metabolomics ; 17(2): 18, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33502591

RESUMO

INTRODUCTION: Wheat (Triticum aestivum) it is one of the most important staple food crops worldwide and represents an important resource for human nutrition. Besides starch, proteins and micronutrients wheat grains accumulate a highly diverse set of phytochemicals. OBJECTIVES: This work aimed at the development and validation of an analytical workflow for comprehensive profiling of semi-polar phytochemicals in whole wheat grains. METHOD: Reversed-phase ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) was used as analytical platform. For annotation of metabolites accurate mass collision-induced dissociation mass spectra were acquired and interpreted in conjunction with literature data, database queries and analyses of reference compounds. RESULTS: Based on reversed-phase UHPLC/ESI-QTOFMS an analytical workflow for comprehensive profiling of semi-polar phytochemicals in whole wheat grains was developed. For method development the extraction procedure and the chromatographic separation were optimized. Using whole grains of eight wheat cultivars a total of 248 metabolites were annotated and characterized by chromatographic and tandem mass spectral data. Annotated metabolites comprise hydroquinones, hydroxycinnamic acid amides, flavonoids, benzoxazinoids, lignans and other phenolics as well as numerous primary metabolites such as nucleosides, amino acids and derivatives, organic acids, saccharides and B vitamin derivatives. For method validation, recovery rates and matrix effects were determined for ten exogenous model compounds. Repeatability and linearity were assessed for 39 representative endogenous metabolites. In addition, the accuracy of relative quantification was evaluated for six exogenous model compounds. CONCLUSIONS: In conjunction with non-targeted and targeted data analysis strategies the developed analytical workflow was successfully applied to discern differences in the profiles of semi-polar phytochemicals accumulating in whole grains of eight wheat cultivars.


Assuntos
Cromatografia Líquida/métodos , Metabolômica/métodos , Compostos Fitoquímicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Triticum/química , Grãos Integrais/química , Aminoácidos/análise , Benzoxazinas/análise , Carboidratos/análise , Cromatografia de Fase Reversa/métodos , Ácidos Cumáricos/análise , Flavonoides/análise , Análise de Alimentos , Humanos , Hidroquinonas/análise , Lignanas/análise , Fenóis/análise , Vitaminas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA